3.3.43 \(\int \frac {1}{x^4 (8 c-d x^3) (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=100 \[ \frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2592 c^{7/2}}+\frac {11 d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 c^{7/2}}-\frac {25 d}{216 c^3 \sqrt {c+d x^3}}-\frac {1}{24 c^2 x^3 \sqrt {c+d x^3}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {446, 103, 152, 156, 63, 208, 206} \begin {gather*} -\frac {25 d}{216 c^3 \sqrt {c+d x^3}}-\frac {1}{24 c^2 x^3 \sqrt {c+d x^3}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2592 c^{7/2}}+\frac {11 d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 c^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(8*c - d*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(-25*d)/(216*c^3*Sqrt[c + d*x^3]) - 1/(24*c^2*x^3*Sqrt[c + d*x^3]) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/
(2592*c^(7/2)) + (11*d*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(96*c^(7/2))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x^2 (8 c-d x) (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=-\frac {1}{24 c^2 x^3 \sqrt {c+d x^3}}-\frac {\operatorname {Subst}\left (\int \frac {11 c d-\frac {3 d^2 x}{2}}{x (8 c-d x) (c+d x)^{3/2}} \, dx,x,x^3\right )}{24 c^2}\\ &=-\frac {25 d}{216 c^3 \sqrt {c+d x^3}}-\frac {1}{24 c^2 x^3 \sqrt {c+d x^3}}-\frac {\operatorname {Subst}\left (\int \frac {\frac {99 c^2 d^2}{2}-\frac {25}{4} c d^3 x}{x (8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{108 c^4 d}\\ &=-\frac {25 d}{216 c^3 \sqrt {c+d x^3}}-\frac {1}{24 c^2 x^3 \sqrt {c+d x^3}}-\frac {(11 d) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )}{192 c^3}+\frac {d^2 \operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{1728 c^3}\\ &=-\frac {25 d}{216 c^3 \sqrt {c+d x^3}}-\frac {1}{24 c^2 x^3 \sqrt {c+d x^3}}-\frac {11 \operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{96 c^3}+\frac {d \operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )}{864 c^3}\\ &=-\frac {25 d}{216 c^3 \sqrt {c+d x^3}}-\frac {1}{24 c^2 x^3 \sqrt {c+d x^3}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2592 c^{7/2}}+\frac {11 d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 c^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 77, normalized size = 0.77 \begin {gather*} \frac {-d x^3 \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {d x^3+c}{9 c}\right )-99 d x^3 \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {d x^3}{c}+1\right )-36 c}{864 c^3 x^3 \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(8*c - d*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(-36*c - d*x^3*Hypergeometric2F1[-1/2, 1, 1/2, (c + d*x^3)/(9*c)] - 99*d*x^3*Hypergeometric2F1[-1/2, 1, 1/2, 1
 + (d*x^3)/c])/(864*c^3*x^3*Sqrt[c + d*x^3])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.10, size = 91, normalized size = 0.91 \begin {gather*} \frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2592 c^{7/2}}+\frac {11 d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{96 c^{7/2}}+\frac {-9 c-25 d x^3}{216 c^3 x^3 \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^4*(8*c - d*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(-9*c - 25*d*x^3)/(216*c^3*x^3*Sqrt[c + d*x^3]) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(2592*c^(7/2)) + (1
1*d*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(96*c^(7/2))

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 272, normalized size = 2.72 \begin {gather*} \left [\frac {{\left (d^{2} x^{6} + c d x^{3}\right )} \sqrt {c} \log \left (\frac {d x^{3} + 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + 297 \, {\left (d^{2} x^{6} + c d x^{3}\right )} \sqrt {c} \log \left (\frac {d x^{3} + 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right ) - 24 \, {\left (25 \, c d x^{3} + 9 \, c^{2}\right )} \sqrt {d x^{3} + c}}{5184 \, {\left (c^{4} d x^{6} + c^{5} x^{3}\right )}}, -\frac {297 \, {\left (d^{2} x^{6} + c d x^{3}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right ) + {\left (d^{2} x^{6} + c d x^{3}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) + 12 \, {\left (25 \, c d x^{3} + 9 \, c^{2}\right )} \sqrt {d x^{3} + c}}{2592 \, {\left (c^{4} d x^{6} + c^{5} x^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[1/5184*((d^2*x^6 + c*d*x^3)*sqrt(c)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 297*(d^2*
x^6 + c*d*x^3)*sqrt(c)*log((d*x^3 + 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 24*(25*c*d*x^3 + 9*c^2)*sqrt(d*x^3
 + c))/(c^4*d*x^6 + c^5*x^3), -1/2592*(297*(d^2*x^6 + c*d*x^3)*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) + (
d^2*x^6 + c*d*x^3)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 12*(25*c*d*x^3 + 9*c^2)*sqrt(d*x^3 + c))/
(c^4*d*x^6 + c^5*x^3)]

________________________________________________________________________________________

giac [A]  time = 0.18, size = 100, normalized size = 1.00 \begin {gather*} -\frac {11 \, d \arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{96 \, \sqrt {-c} c^{3}} - \frac {d \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{2592 \, \sqrt {-c} c^{3}} - \frac {25 \, {\left (d x^{3} + c\right )} d - 16 \, c d}{216 \, {\left ({\left (d x^{3} + c\right )}^{\frac {3}{2}} - \sqrt {d x^{3} + c} c\right )} c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-11/96*d*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c^3) - 1/2592*d*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt
(-c)*c^3) - 1/216*(25*(d*x^3 + c)*d - 16*c*d)/(((d*x^3 + c)^(3/2) - sqrt(d*x^3 + c)*c)*c^3)

________________________________________________________________________________________

maple [C]  time = 0.19, size = 549, normalized size = 5.49 \begin {gather*} -\frac {\left (\frac {2}{27 \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}\, c d}+\frac {i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{18 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{243 c^{2} d^{3} \sqrt {d \,x^{3}+c}}\right ) d^{2}}{64 c^{2}}+\frac {\frac {d \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{c^{\frac {5}{2}}}-\frac {2 d}{3 \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}\, c^{2}}-\frac {\sqrt {d \,x^{3}+c}}{3 c^{2} x^{3}}}{8 c}+\frac {\left (-\frac {2 \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3 c^{\frac {3}{2}}}+\frac {2}{3 \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}\, c}\right ) d}{64 c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x)

[Out]

1/8/c*(-1/3*(d*x^3+c)^(1/2)/c^2/x^3-2/3*d/c^2/((x^3+c/d)*d)^(1/2)+d*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(5/2))-
1/64/c^2*d^2*(2/27/((x^3+c/d)*d)^(1/2)/c/d+1/243*I/c^2/d^3*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*
(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(
-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x
^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)
-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c
*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)
*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(
1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+1/64/c^2*d*(2/3/((x^3+c/d)*d)^(1/2)/c-2/3*arctanh((d*x^3+c)^(1/2
)/c^(1/2))/c^(3/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {1}{{\left (d x^{3} + c\right )}^{\frac {3}{2}} {\left (d x^{3} - 8 \, c\right )} x^{4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

-integrate(1/((d*x^3 + c)^(3/2)*(d*x^3 - 8*c)*x^4), x)

________________________________________________________________________________________

mupad [B]  time = 3.80, size = 88, normalized size = 0.88 \begin {gather*} \frac {11\,d\,\mathrm {atanh}\left (\frac {c^3\,\sqrt {d\,x^3+c}}{\sqrt {c^7}}\right )}{96\,\sqrt {c^7}}-\frac {25\,d}{216\,c^3\,\sqrt {d\,x^3+c}}+\frac {d\,\mathrm {atanh}\left (\frac {c^3\,\sqrt {d\,x^3+c}}{3\,\sqrt {c^7}}\right )}{2592\,\sqrt {c^7}}-\frac {1}{24\,c^2\,x^3\,\sqrt {d\,x^3+c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(c + d*x^3)^(3/2)*(8*c - d*x^3)),x)

[Out]

(11*d*atanh((c^3*(c + d*x^3)^(1/2))/(c^7)^(1/2)))/(96*(c^7)^(1/2)) - (25*d)/(216*c^3*(c + d*x^3)^(1/2)) + (d*a
tanh((c^3*(c + d*x^3)^(1/2))/(3*(c^7)^(1/2))))/(2592*(c^7)^(1/2)) - 1/(24*c^2*x^3*(c + d*x^3)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{- 8 c^{2} x^{4} \sqrt {c + d x^{3}} - 7 c d x^{7} \sqrt {c + d x^{3}} + d^{2} x^{10} \sqrt {c + d x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(-d*x**3+8*c)/(d*x**3+c)**(3/2),x)

[Out]

-Integral(1/(-8*c**2*x**4*sqrt(c + d*x**3) - 7*c*d*x**7*sqrt(c + d*x**3) + d**2*x**10*sqrt(c + d*x**3)), x)

________________________________________________________________________________________